초등학생이 중학교로 진학하면서 가장 크게 달라지는 것은 시험을 년 4회 이상 치르는 것이다. 물론 학교에 따라 학년 별로 시험을 치르지 않는 경우도 있지만 그런 부분도 역시 부담이 있음에는 크게 다르지 않다. 초등학교에서 상위권을 유지하던 학생이 중학교로 진학하면서 성적이 오르지 않는 경우가 있다. 중학교 수학과 초등학교 수학은 접근부터 다른 문제이다. 우선 중학교 때는 암기 위주의 공부가 통하지 않는다. 시험 범위와 양이 늘어나 기억해야 할 것들이 많아지므로 초등학교 때보다 효율적이고 계획적으로 접근해야 할 필요가 있다. 필자가 자주 상담 받는 내용 중 몇 가지에 대해서 이야기하고자 한다.
1. 선행은 어떻게 해야 하나요?
선행이 중요하긴 하나 학부모님께서 모르시는 게 있다. 결론부터 이야기하면 많은 권수의 선행은 중요하지 않다. 우리나라의 수학 교육 과정은 ''나선형구조''이다. 1학년 때 일차방정식을 2학년 때는 연립방정식을 3학년 때는 이차방정식을 배우게 된다. 물론 고1때는 부정방정식과 3차방정식을 배우는 즉, 학년이 올라갈수록 같은 이름의 단원을 배운다. 이는 식의 연산 함수 경우의 수 도형 등 에서도 비슷하게 나타난다. 이에 따라 이차방정식을 풀 수 있게 되면 방정식에 자신감이 생겨 일차방정식도 풀기 수월해 지는 것은 당연하다. 따라서 선행의 권수도 중요하지만 방정식이면 방정식, 함수면 함수식의 한 라인을 완벽하게 이해하려는 노력이 필요하다. 중구난방 식으로 배우게 되면 보여주기 위한 선행이 되기 쉽다는 뜻이다.
2. 문제만 많이 풀면 되나요?
공식에 숫자를 넣는 계산 연습이 초등수학이었다면, 공식에 담겨있는 개념을 이해하는 것이 중학수학이다. 특히 서술형 문제는 개념을 이해했는 지 물어보는 경우가 많다. 수학개념은 앞서 말씀드린 바와 같이 한 라인으로 이어지게 마련이고 따라서 개념을 탄탄히 다지지 않은 상황에서 문제만 많이 푼다면 시간낭비일 뿐이다. 문제집은 개념서로 배운 내용을 완벽히 이해 했나 확인해 보는 중요한 도구이지만 문제풀이 자체가 공부가 될 수 없으며 문제풀이 이전에 충분한 개념 이해가 뒷받침되어야 한다. 충분한 개념이해가 선행되어야 아이들이 어려워하는 서술형에서도 좋은 성적을 기대 할 수 있을 것이다.
3. 공부양은 어느 정도 늘려야 할까요?
중학교 때는 초등학교 때보다 공부를 많이 해야 하는 것은 사실이나 그 내용도 중요하다 하겠다. 중학교 때는 암기 위주의 공부가 통하지 않는다. 개념의 이해가 중요하며 그 후에 양도 점차 늘리는 것이 최상위권으로 가는 지름길이라 하겠다.
공부를 못하는 이유는 의외로 단순하다. 방법이 잘못 되었거나 자기가 아는 방법대로 실행하지 못해서이다. 그러나 잘하는 방법도 의외로 간단하다. 방법을 알게 하고 방법대로 어떻게 하는 지 배우고 또 잘 할 수 있도록 연습하면 된다. 고등선행, 단기완성 같은 사탕발림 말에 현혹되지 말고 멀리계획을 세우고 자기가 할 수 있는 것부터 차근차근 실행해 나간다면 공부가 쉽게 다가올 것이다.
장형석 선생
현 수학평천하 수학학원 대표강사
전 메가스터디학원
전 진성기숙학원
현 아이셀파 인터넷강사
전 수박씨닷컴 인터넷강사
Tel. 2655-1144
Copyright ⓒThe Naeil News. All rights reserved.
위 기사의 법적인 책임과 권한은 내일엘엠씨에 있습니다.
<저작권자 ©내일엘엠씨, 무단 전재 및 재배포 금지>