송도정가수학전문학원
부원장 공학박사 조경우
신용카드에서 디지털 혁명까지 최근에 물리학의 양자장론과 끈이론 (String theory)에서도 19세기 말부터 출발해 20세기말에 매듭이론 (knot theory) 으로 크게 발전한 위상수학(位相數學,topology)이라는 학문이 크게 쓰이고 있다. 현대 수학에서 빼놓을 수 없는 것이 암호이론과 게임이론이다.
암호이론과 관련해 튜링(1912-1954)은 2차 세계대전 당시 독일군의 암호를 해독해 영국을 전쟁에서 승리하도록 도움을 준 것으로 유명하다. 또 20세기 경제학과 정치학, 외교학 발전에 크게 기여한 게임이론은 독일 수학자 폰노이만(1903-1957)의 작품이다. 물론 튜링과 폰노이만은 컴퓨터를 발명한 장본인들이기도 하다.
컴퓨터가 오늘날처럼 발전하게 된 데는 여러 과학자들의 힘이 컸지만, 수학자들의 역할도 무시할 수 없었다. 예를 들어 불(1815-1864)의 2진법(binary) 대수체계에 대한 이론은 1940년 이후 전기회로에 이용되면서 컴퓨터를 이진 회로로 동작하는 기계로 설계하였다. 현재 전 세계에서 통용되는 ‘공개키 암호’의 원리도 군론과 소인수분해이론이 응용된 것이다. 이러한 이론은 현대사회에서 개인들이 신용카드를 사용하고, 은행 예금을 인출하며, e메일을 주고받으며, 셀룰라폰을 사용하고, 기업이나 국방외교의 기밀을 보장하는데 유용하게 쓰인다.
요 즘 흔히 쓰이는 용어 중 디지털 혁명도 수학과 함께 시작했다. 프랑스의 푸리에(1768-1830)의 이론에 따르면 모든 주기적인 현상은 sin이나 cos등 삼각함수의 합으로 나타낼 수 있다. 이 이론은 1948년 벨 실험실(Bell Lab)의 섀논이라는 수학자의 논문 ‘통신의 수학적 이론’에 적용된다.
이 결과로 아날로그 통신시대는 막을 내렸고 디지털 혁명을 가속시켰다. 현재 머리카락 굵기의 전선에 6백40만개 이상의 신호를 처리할 수 있게 된것이 수학자들의 공로란 얘기다. 푸리에이론은 많은 용량의 음악을 담는 CD를 탄생시켰을 뿐 아니라 지구 반대편의 사람들과 얼굴을 보면서 영상통화도 가능하게 만들었다.
- 날씨와 미분방정식
현대인의 생활과 가장 밀접한 관련을 맺고 있는 날씨도 수학을 빼고는 설 자리가 없다. 태풍이 분다든가 비가 온다든지 하는 기상변화와 지진이 일어나고 해류가 흐르는 것들을 분석하고 예측하기 위해서는 고도의 미분방정식을 잘 풀어야 하기 때문이다. 일기예보가 어려운 이유 중의 하나는 자료를 분석하고 설계하는 수학이 어렵기 때문이다.
미분방정식과 같은 수학은 국가의 경제에도 큰 영향을 미친다. 얼마 전 미국이 누렸던 호황은 금융호황이라고 불리는데 이것은 금용수학의 바탕에서 이루어졌던 것이다. 1973년 블랙과 숄츠 같은 수학자들은 미분방정식 이론이 금융시장에도 잘 적용되는 것을 발견했다.
금융시장의 흐름을 미분방정식을 통해 알 수 있다는 말이다. 뉴욕의 금융시장에서는 수천 명의 수학자들이 새로운 금융상품을 만들어낸다. 국민연금이나, 퇴직금, 의료보험금 등 경제활동으로 파생되는 경영 문제와 기업평가 등은 수학자의 손에서 이뤄진다. 세계 경제의 흐름을 수학자들이 이끌어 낸다고 말할 수 있다.
이렇게 현대 수학은 과학은 물론, 경제 분야와 일상생활 전반에 깊이 관여하고 있다. 수학은 이공계로 갈 사람들만 공부하면 될 것이라 생각한다면, 큰 오해다. 수학은 사람의 마음을 종합적으로 훈련시키는 학문이다.
단순히 과학을 배우기 위한 도구가 아니라 바르게 생각하고 표현하는 방법을 제공하는 언어이기 때문이다. 젊었을 때 다양한 지식을 배우는 것은 매우 중요하다. 수학뿐만 아니라 수학의 인접 분야에 대해서도 다양한 지식을 쌓아야 한다. 이렇게 배워둔 것들은 오랜 시간이 지난 후에 여러 가지로 커다란 도움이 될 것이다.
문의) 032-833-6638
Copyright ⓒThe Naeil News. All rights reserved.
위 기사의 법적인 책임과 권한은 내일엘엠씨에 있습니다.
<저작권자 ©내일엘엠씨, 무단 전재 및 재배포 금지>